Questions on product of power rule of exponents


In this chapter we will discuss questions related to product of power rule with detailed solution.

The law of product of power rule is given as;

\mathtt{a^{m} \times a^{n} =\ a^{m+n}}

Practice the formula in paper so that you can remember it for long time.


Question 01
Solve the below expression

\mathtt{( i) \ 5\ \left( a^{2} b^{3}\right)^{4} \ \times 6\left( a^{4} b^{5}\right)^{2} \ }\\\ \\ \mathtt{( ii) \ \left( 11\ \times 10^{3}\right)\left( 4\times 10^{-7}\right)}\\\ \\ \mathtt{( iii) \ \left( ab^{5} c^{2}\right) \times 13\left( a^{-3} b^{-2} c^{11}\right)}\\\ \\ \mathtt{( iv) \ 7^{3} \times 9^{3}}\\\ \\ \mathtt{( v) \ 18^{9} \times 18^{-4}}

Solution

\mathtt{( i) \ 5\ \left( a^{2} b^{3}\right)^{4} \ \times 6\left( a^{4} b^{5}\right)^{2} \ }\\\ \\ \mathtt{\Longrightarrow \ 5\left( a^{4\times 2} .b^{3\times 4}\right) .\ 6\left( a^{4\times 2} .b^{5\times 2}\right)}\\\ \\ \mathtt{\Longrightarrow \ 5\left( a^{8} .b^{12}\right) .6\left( a^{8} .b^{10}\right)}\\\ \\ \mathtt{\Longrightarrow \ 30\ \left( a^{8+8}\right)\left( b^{12+10}\right)}\\\ \\ \mathtt{\Longrightarrow \ 30\ .a^{16} .\ b^{22}}

\mathtt{( ii) \ \left( 11\ \times 10^{3}\right)\left( 4\times 10^{-7}\right)}\\\ \\ \mathtt{\Longrightarrow \ ( 11\times 4)\left( 10^{3} \times 10^{-7}\right)}\\\ \\ \mathtt{\Longrightarrow \ 44\ .\ 10^{3-7}}\\\ \\ \mathtt{\Longrightarrow \ 44.\ 10^{-4}}

\mathtt{( iii) \ \left( ab^{5} c^{2}\right) \times 13\left( a^{-3} b^{-2} c^{11}\right)}\\\ \\ \mathtt{\Longrightarrow \ 13\ \left( a.a^{-3}\right)\left( b^{5} .b^{-2}\right)\left( c^{2} .c^{11}\right)}\\\ \\ \mathtt{\Longrightarrow \ 13\ \left( a^{1-3}\right)\left( b^{5-2}\right)\left( c^{2+11}\right)}\\\ \\ \mathtt{\Longrightarrow \ 13\ \left( a^{-2}\right)\left( b^{3}\right)\left( c^{13}\right)}\\\ \\ \mathtt{\Longrightarrow \ 13\ a^{-2} b^{3} c^{13}}

\mathtt{( iv) \ 7^{3} \times 9^{3}}\\\ \\ \mathtt{\Longrightarrow \ ( 7\times 9)^{3}}\\\ \\ \mathtt{\Longrightarrow \ 63^{3}}

\mathtt{( v) \ 18^{9} \times 18^{-4}}\\\ \\ \mathtt{\Longrightarrow \ 18^{9-4}}\\\ \\ \mathtt{\Longrightarrow \ 18^{5}}

Question 02
Solve the below expression;

\mathtt{( i) \ \left( x^{\frac{2}{3}} y^{\frac{-1}{2}}\right)^{4} \times \left( x^{6} y^{\frac{5}{6}}\right)}\\\ \\ \mathtt{( ii) \ \left(\sqrt{x^{3}}\right)^{4} \times \left( x^{-\frac{1}{2}}\right)}\\\ \\ \mathtt{( iii) \ 25^{\frac{5}{2}} \times 243^{\frac{3}{5}}}\\\ \\ \mathtt{( iv) \ \left(\frac{\sqrt{3}}{7}\right)^{4} \times \left(\frac{\sqrt{3}}{7}\right)^{2}}\\\ \\ \mathtt{( v) \ \sqrt{5\times 2^{-3}} \times 5^{4}}

Solution
\mathtt{( i) \ \left( x^{\frac{2}{3}} y^{\frac{-1}{2}}\right)^{4} \times \left( x^{6} y^{\frac{5}{6}}\right)}\\\ \\ \mathtt{\Longrightarrow \ \left( x^{\frac{2\times 4}{3}} y^{\frac{-4}{2}}\right) \times \left( x^{6} y^{\frac{5}{6}}\right)}\\\ \\ \mathtt{\Longrightarrow \ \left( x^{\frac{8}{3}} .y^{-2}\right) \times \left( x^{6} y^{\frac{5}{6}}\right)}\\\ \\ \mathtt{\Longrightarrow x^{\frac{8}{3} +6} .\ y^{-2+\frac{5}{6}}}\\\ \\ \mathtt{\Longrightarrow \ x^{\frac{26}{3}} .\ y^{\frac{-7}{6}}}

\mathtt{( ii) \ \left(\sqrt{x^{3}}\right)^{4} \times \left( x^{-\frac{1}{2}}\right)}\\\ \\ \mathtt{\Longrightarrow \ \left( x^{\frac{3}{2}}\right)^{4} \times x^{\frac{-1}{2}}}\\\ \\ \mathtt{\Longrightarrow \ x^{\frac{3}{2} \times 4} \times x^{\frac{-1}{2}}}\\\ \\ \mathtt{\Longrightarrow \ x^{6} \times x^{\frac{-1}{2}}}\\\ \\ \mathtt{\Longrightarrow \ x^{6-\frac{1}{2}}}\\\ \\ \mathtt{\Longrightarrow \ x^{\frac{11}{2}}}

\mathtt{( iii) \ 25^{\frac{5}{2}} \times 243^{\frac{3}{5}}}\\\ \\ \mathtt{\Longrightarrow \ \left( 5^{2}\right)^{\frac{5}{2}} \times \left( 3^{5}\right)^{\frac{3}{5}}}\\\ \\ \mathtt{\Longrightarrow \ 5^{2\times \frac{5}{2}} \times 3^{5\times \frac{3}{5}}}\\\ \\ \mathtt{\Longrightarrow \ 5^{5} \times 3^{3}}\\\ \\ \mathtt{\Longrightarrow \ 84375}

\mathtt{( iv) \ \left(\frac{\sqrt{3}}{7}\right)^{4} \times \left(\frac{\sqrt{3}}{7}\right)^{2}}\\\ \\ \mathtt{\Longrightarrow \ \ \left(\frac{\sqrt{3}}{7}\right)^{4+2}}\\\ \\ \mathtt{\Longrightarrow \ \ \left(\frac{\sqrt{3}}{7}\right)^{6}}\\\ \\ \mathtt{\Longrightarrow \ \frac{\left( 3^{\frac{1}{2}}\right)^{6}}{7^{6}}}\\\ \\ \mathtt{\Longrightarrow \ \frac{3^{3}}{7^{6}}}

\mathtt{( v) \ \sqrt{5\times 2^{-3}} \times 5{^{4}}}\\\ \\ \mathtt{\Longrightarrow \ \sqrt{\frac{5}{2^{3}}} \times 5^{4}}\\\ \\ \mathtt{\Longrightarrow \ 5^{\frac{1}{2}} \times \frac{1}{\sqrt{2^{3}}} \times 5^{4}}\\\ \\ \mathtt{\Longrightarrow \ 5^{\frac{1}{2} +4} \times \frac{1}{\sqrt{2^{3}}}}\\\ \\ \mathtt{\Longrightarrow 5^{\frac{9}{2}} \times 8^{\frac{-1}{2}}}



Leave a Comment

Your email address will not be published. Required fields are marked *

You cannot copy content of this page