Question (01)
How\ much\ does\ \sqrt{12} +\sqrt{18} \ exceeds\ \sqrt{3} +\sqrt{2} \ \ ?\\\ \\
( a) \ 2\left(\sqrt{3} -\sqrt{2}\right)\\ \\
( b) \ 2\left(\sqrt{3} +\sqrt{2}\right)\\ \\
( c) \ \sqrt{3} +2\sqrt{2})\\ \\
( d) \ \sqrt{3} -2\sqrt{2})\\\ \\
Read Solution
Solution
( \sqrt{12} +\sqrt{18})-( \sqrt{3} +\sqrt{2})\\\ \\ ⟹ 2\sqrt{3}+3 \sqrt{2}- \sqrt{3} - \sqrt{2} \\\ \\ ⟹ \sqrt{3} +2\sqrt{2}Option (b) is the right answer
Question (02)
Find\ the\ value\ of\ \sqrt{5+2\sqrt{6}} -\frac{1}{\sqrt{5+2\sqrt{6}}} ?\\\ \\
( a)2\sqrt{3}\\ \\
( b) 2\sqrt{2}\\ \\
( c) \ 1+\sqrt{5}\\ \\
( d) \ \sqrt{5} -1 \\\ \\
Read Solution
Option (b) is the right answer
Question (03)
Find\ the\ value\ of\ \sqrt{2^{4}} +\sqrt[3]{64} +\sqrt[4]{2^{8}}\\ \\
( a) 12 \\ \\
( b) 16 \\ \\
( c) 18 \\ \\
( d) 24 \\\ \\
Read Solution
\sqrt{2^{4}} +\sqrt[3]{64} +\sqrt[4]{2^{8}} \\\ \\ ⟹ 2^{4\times \frac{1}{2}} +4^{3\times \frac{1}{3}} +2^{8\times \frac{1}{4}} \\\ \\ ⟹ 2^{2} +4+2^{2} \\\ \\⟹ 4+4+4=12
Option (a) is the right answer
Question (04)
Find\ the\ value\ of\ 2\sqrt[3]{32} +3\sqrt[3]{4} +\sqrt[3]{500} \\ \\
( a) 4\sqrt[3]{6}\\ \\
( b) 3\sqrt{24} \\ \\
( c) 6\sqrt[3]{4} \\ \\
( d) 916 \\\ \\
Read Solution
2\sqrt[3]{32} -3\sqrt[3]{4} +\sqrt[3]{500} \\\ \\ ⟹ 2 \sqrt[3]{2\times 2\times 2\times 4} -3\sqrt[3]{4} +\sqrt[3]{5\times 5\times 5\times 4} \\\ \\ ⟹ 4\sqrt[3]{4} -3\sqrt[3]{4} +5\sqrt[3]{4} \\\ \\ ⟹ 9\sqrt[3]{4} -3\sqrt[3]{4} \\\ \\⟹ 6\sqrt[3]{4}
Option (c) is the right answer
(05) Find the solution of
\frac{\frac{3}{2+\sqrt{3}} -\frac{2}{2-\sqrt{3}}}{2-5\sqrt{3}} \\\ \\
(a) 1
(b) 2
(c) 3
(d) 4
\frac{\frac{3}{2+\sqrt{3}} -\frac{2}{2-\sqrt{3}}}{2-5\sqrt{3}} \\\ \\ ⟹ \frac{\frac{3\left( 2-\sqrt{3}\right) -2\left( 2+\sqrt{3}\right)}{\left( 2+\sqrt{3}\right)\left( 2-\sqrt{3}\right)}}{2-5\sqrt{3}} \\\ \\⟹ \frac{6-3\sqrt{3} -4-2\sqrt{3}}{\left( 2+\sqrt{3}\right)\left( 2-\sqrt{3}\right)\left( 2-5\sqrt{3}\right)} \\\ \\⟹ \frac{2-5\sqrt{3}}{2-5\sqrt{3}}=1
Option (a) is the right answer
Question (06)
Which\ of\ the\ following\ is\ least\\ \\
\sqrt{3} ,\ \sqrt[3]{2} ,\ \sqrt{2} \ and\ \sqrt[3]{4}\\\ \\
( a) \sqrt{3} \\ \\
( b) \sqrt[3]{2} ,\\ \\
( c) \sqrt{2} \\ \\
( d) \sqrt[3]{4}\\\ \\
Read Solution
option (b) is the right answer
Question (07)
Which\ of\ the\ following\ is\ biggest\\ \\
\sqrt[3]{4} ,\ \sqrt[4]{6} ,\ \sqrt[6]{15} \ and\ \sqrt[12]{24} 5\\\ \\
(a) \sqrt[3]{4} \\ \\
(b) \sqrt[4]{6} \\ \\
(c) \sqrt[6]{15} \\ \\
(d) \sqrt[12]{245}\\\ \\
\sqrt[3]{4} ,\sqrt[4]{6} ,\sqrt[6]{15} ,\sqrt[12]{245} \\\ \\⟹ 4^{\frac{1}{3}} ,6^{\frac{1}{4}} ,15^{\frac{1}{6}} ,245^{\frac{1}{12}}\\\ \\⟹ 4^{\frac{4}{12}} ,6^{\frac{3}{12}} ,15^{\frac{2}{12}}, 245^{\frac{1}{12}} \ \ \ \ (LCM of 3,4,6 and12 is 12) \\\ \\ ⟹ \sqrt[12]{4^{4}} ,\sqrt[12]{6^{3}} ,\sqrt[12]{15^{2}} ,\sqrt[12]{245}\\\ \\⟹ \sqrt[12]{256} ,\sqrt[12]{216} ,\sqrt[12]{225} ,\sqrt[12]{245} \\\ \\ Hence \sqrt[3]{4} \ is \ biggest.
option (a) is the right answer
Question (08)
\sqrt{8} \ -\sqrt{4} \ -\sqrt{2} \ equals?\\\ \\
Read Solution
Question (09)
{64^{\frac{-2}{3}} \times \ \frac{1}{4}^{-2}} \ equals?\\\ \\
Read Solution
64^{\frac{-2}{3}} \times \left(\frac{1}{4}\right)^{-2} \\\ \\ ⟹ \left( 4^{3}\right)^{\frac{-2}{3}} \times \left(\frac{1}{4}\right)^{-2} \\\ \\ ⟹ 4^{-2} \times \left(\frac{1}{4}\right)^{-2} \\\ \\ ⟹ \left(\frac{1}{4}\right)^{2}\times \left(\frac{1}{4}\right)^{-2} \\\ \\ ⟹ \left(\frac{1}{4}\right)^{2-2} \\\ \\⟹ \left(\frac{1}{4}\right)^{0}=1 \\\ \\
Question 10
\frac{2+\sqrt{3}}{2-\sqrt{3}} \ \ +\ \frac{2-\sqrt{3}}{2+\sqrt{3}} \ +\frac{\sqrt{3} -1}{\sqrt{3} +1}\\\ \\
(a) 2-\sqrt{3}\\ \\
(b) 2+\sqrt{3}\\ \\
(c) 16-\sqrt{3}\\ \\
(d) 40-\sqrt{3}\\ \\
Read Solution
\left(\frac{2+\sqrt{3}}{2-\sqrt{3}} +\frac{2-\sqrt{3}}{2+\sqrt{3}} +\frac{\sqrt{3} -1}{\sqrt{3} +1}\right)\\\ \\ ⟹ \left(\frac{\left( 2+\sqrt{3}\right)^{2} +\left( 2-\sqrt{3}\right)^{2}}{\left( 2+\sqrt{3}\right)\left( 2-\sqrt{3}\right)} +\frac{\sqrt{3} -1}{\sqrt{3} +1} \times \frac{\sqrt{3} -1}{\sqrt{3} -1}\right) \\\ \\ ⟹ \left(\frac{4+3+4\sqrt{3} +4+3-4\sqrt{3}}{4-2\sqrt{3} +2\sqrt{3} -3} +\frac{\left(\sqrt{3} -1\right)^{2}}{3-1}\right) \\\ \\ ⟹ \left( 14+\frac{3+1-2\sqrt{3}}{2}\right) \\\ \\ ⟹ \left( 14+\frac{4-2\sqrt{3}}{2}\right) \\\ \\ ⟹ 14+ \frac{2\left( 2-\sqrt{3}\right)}{2} \\\ \\ ⟹ 14+ 2-\sqrt{3} \\\ \\ ⟹ 16- \sqrt{3} \\\ \\
option (c) is the right answer