# How to Multiply Decimals

In this post we will learn two methods to multiply decimals.
After that we will solve questions related to this topic.

## Multiplying Two Decimal Numbers

Method 01

In order to multiply decimal follow the below steps:

(a) Count the total decimal places of given numbers
(b) Remove the decimal points of number and multiply them (as you do simply in any whole number)
(c) Take the result and put decimal point from right counting as many digits as the total decimal places

Let us understand the above steps using examples

Example 01
Multiply 0.2 x 0.12

Using the above method, we will multiply the decimals

(a) Count total decimal places of given numbers
0.2 ⟹ One decimal place
0.12 ⟹ Two decimal place

Total Decimal Place = 1 + 2 ⟹ 3

(b) Remove the decimal points and multiply the whole numbers

Whole number result = 24

(c) Put the decimal point, counting (from right) as many digits as total decimal places

Total decimal place = 3

⟹ As 24 contains only 2 digits, we will insert 0 at the front
So the number is 024

Now putting decimal point after counting 3 digits from the right

Hence, 0.024 is the final solution

Example 02
Multiply 101 x 0.25

(a) Count total decimal places
101 ⟹ 0 decimal place
0.25 ⟹ 2 decimal place

Total decimal place = 0 + 2 ⟹ 2

(b) Remove the decimal points and multiply the whole numbers

(c) Put the decimal point counting (from right) as many digit as total decimal place

W know that:
Total decimal place = 2

Now putting decimal point, counting two digits from right

Hence, 25.25 is the right answer

Method 2

Let us understand second method to multiply decimal numbers.

(a) Remove the decimal point and convert it into fraction with denominator 10, 100, 1000, etc..
(b) Multiply numerator and denominator separately
(c) After Multiplication, again convert fraction into decimal

Let us understand the method with examples:

Example 01
Multiply 0.5 x 0.8

Solution
(a) Convert the decimal into fraction

0.5 ⟹ \frac{5}{10} \\ \\
0.8 ⟹ \frac{8}{10} \\ \\

The multiplication can be written as:

(b) Multiply numerator and denominator separately

(c) Convert the Fraction into decimal

Hence, 0.4 is the solution

Example 02
Multiply 1.2 x 0.03

Solution
(a) Convert the decimal into fraction

1.2 ⟹ \frac{12}{10} \\ \\
0.03 ⟹ \frac{3}{100} \\ \\

The multiplication can be written as:

(b) Multiply numerator and denominator separately

(c) Convert fraction into decimal

Hence, 0.036 is the solution

I hope you have understood both the methods.
Now it is time to practice the concepts.

## Decimal Multiplication Worksheet

Given below are set of decimal numbers.
Multiply the numbers and find the right answer

All the given questions are to the standard of Grade 5 Math Curriculum>
Each question is provided with solution for your reference

(01) Multiply the decimals
65.5 x 3

(a) 199.5
(b) 125.75
(c) 196.5
(d) 197.25

\Longrightarrow \ 65.5\ \times 3 \\\ \\ \Longrightarrow \ \frac{655}{10} \ \times \frac{3}{1} \\\ \\ \Longrightarrow \frac{655\times 3}{10}\\\ \\ \Longrightarrow \ \frac{1965}{10}\\\ \\ \Longrightarrow 196.5 \\\ \\

Option (c) is the solution

(02) 0.5 x 0.25

(a) 0.125
(b) 0.220
(c) 0.175
(d) 0.250

\Longrightarrow \ 0.5\ \times 0.25 \\\ \\ \Longrightarrow \ \frac{5}{10} \ \times \frac{25}{100} \\\ \\ \Longrightarrow \frac{5\times 25}{10\times 100}\\\ \\ \Longrightarrow \ \frac{125}{1000}\\\ \\ \Longrightarrow 0.125 \\\ \\

Option (a) is the right answer

(03) 0.08 x 0.03

(a) 0.027
(b) 0.024
(c) 0.0027
(d) 0.0024

\Longrightarrow \ 0.08\ \times 0.03 \\\ \\ \Longrightarrow \ \frac{8}{100} \ \times \frac{3}{100} \\\ \\ \Longrightarrow \frac{8\times 3}{100\times 100}\\\ \\ \Longrightarrow \ \frac{24}{10000}\\\ \\ \Longrightarrow 0.0024 \\\ \\

Option (d) is the solution

(04) 1.2 x 1.5

(a) 1.08
(b) 1.8
(c) 1.008
(d) 8

\Longrightarrow \ 1.2\ \times 1.5 \\\ \\ \Longrightarrow \ \frac{12}{10} \ \times \frac{15}{10} \\\ \\ \Longrightarrow \frac{12\times 15}{10\times 10}\\\ \\ \Longrightarrow \ \frac{180}{100}\\\ \\ \Longrightarrow 1.8\\\ \\

Option (b) is the solution

(05) 1.2 x 1.5

(a) 1.08
(b) 1.8
(c) 1.008
(d) 8

\Longrightarrow \ 1.2\ \times 1.5 \\\ \\ \Longrightarrow \ \frac{12}{10} \ \times \frac{15}{10} \\\ \\ \Longrightarrow \frac{12\times 15}{10\times 10}\\\ \\ \Longrightarrow \ \frac{180}{100}\\\ \\ \Longrightarrow 1.8\\\ \\

Option (b) is the solution

(06) 0.7 x 0.03

(a) 0.021
(b) 0.21
(c) 2.1
(d) 21

\Longrightarrow \ 0.7\ \times 0.03 \\\ \\ \Longrightarrow \ \frac{7}{10} \ \times \frac{3}{100} \\\ \\ \Longrightarrow \frac{7\times 3}{10\times 100}\\\ \\ \Longrightarrow \ \frac{21}{1000}\\\ \\ \Longrightarrow 0.021\\\ \\

Option (a) is the solution

(06) 0.31 x 6

(a) 16.6
(b) 15.5
(c) 16.5
(d) 18.6

\Longrightarrow \ 0.31\ \times 6 \\\ \\ \Longrightarrow \ \frac{31}{100} \ \times \frac{6}{1} \\\ \\ \Longrightarrow \frac{31\times 6}{100\times 1}\\\ \\ \Longrightarrow \ \frac{186}{100}\\\ \\ \Longrightarrow 18.6\\\ \\

Option (d) is the solution

(07) 21.68 x 0.5

(a) 10.85
(b) 10.84
(c) 10.96
(d) 10.91

\Longrightarrow \ 21.68\ \times 0.5 \\\ \\ \Longrightarrow \ \frac{2168}{100} \ \times \frac{5}{10} \\\ \\ \Longrightarrow \frac{2168\times 5}{100\times 10}\\\ \\ \Longrightarrow \ \frac{10840}{1000}\\\ \\ \Longrightarrow 10.84 \\\ \\

Option (b) is the solution

(08) 0.2 x 0.09

(a) 0.032
(b) 0.18
(c) 0.018
(d) 0.15

\Longrightarrow \ 0.2\ \times 0.09 \\\ \\ \Longrightarrow \ \frac{2}{10} \ \times \frac{9}{100} \\\ \\ \Longrightarrow \frac{2\times 9}{10\times 100}\\\ \\ \Longrightarrow \ \frac{18}{1000}\\\ \\ \Longrightarrow 0.018 \\\ \\

Option (c) is the solution

(09) 6 x 4.4

(a) 22.9
(b) 26.8
(c) 26.4
(d) 22.5

\Longrightarrow \ 6\ \times 4.4 \\\ \\ \Longrightarrow \ \frac{6}{1} \ \times \frac{44}{10} \\\ \\ \Longrightarrow \frac{6\times 44}{1\times 10}\\\ \\ \Longrightarrow \ \frac{264}{10}\\\ \\ \Longrightarrow 26.4 \\\ \\

Option (c) is the solution

(10) 50 x 0.05

(a) 2.6
(b) 2.5
(c) 2.7
(d) 2.8

\Longrightarrow \ 50\ \times 0.05 \\\ \\ \Longrightarrow \ \frac{50}{1} \ \times \frac{5}{100} \\\ \\ \Longrightarrow \frac{50\times 5}{1\times 100}\\\ \\ \Longrightarrow \ \frac{250}{100}\\\ \\ \Longrightarrow 2.5 \\\ \\

Option (b) is the solution

(11) 1.1 x 1.1

(a) 1.21
(b) 1.37
(c) 1.18
(d) 1.42

\Longrightarrow \ 1.1\ \times 1.1 \\\ \\ \Longrightarrow \ \frac{11}{10} \ \times \frac{11}{10} \\\ \\ \Longrightarrow \frac{11\times 11}{10\times 10}\\\ \\ \Longrightarrow \ \frac{121}{100}\\\ \\ \Longrightarrow 1.21 \\\ \\

Option (a) is the solution

(12) 15.4 x 3.6

(a) 63.24
(b) 23.66
(c) 44.55
(d) 55.44

\Longrightarrow \ 15.4\ \times 3.6 \\\ \\ \Longrightarrow \ \frac{154}{10} \ \times \frac{36}{10} \\\ \\ \Longrightarrow \frac{154\times 36}{10\times 10}\\\ \\ \Longrightarrow \ \frac{5544}{100}\\\ \\ \Longrightarrow 55.44 \\\ \\

Option (d) is the solution

(13) 1.69 x 100

(a) 16900
(b) 1690
(c) 169
(d) 16.9

\Longrightarrow \ 1.69\ \times 100 \\\ \\ \Longrightarrow \ \frac{169}{100} \ \times \frac{100}{1} \\\ \\ \Longrightarrow \frac{169\times 100}{100\times 1}\\\ \\ \Longrightarrow \ \frac{16900}{100}\\\ \\ \Longrightarrow 169 \\\ \\

Option (c) is the solution

(14) 24.4 x 10

(a) 244
(b) 2440
(c) 2.44
(d) 24400

\Longrightarrow \ 24.4\ \times 10 \\\ \\ \Longrightarrow \ \frac{244}{10} \ \times \frac{10}{1} \\\ \\ \Longrightarrow \frac{244\times 10}{10\times 1}\\\ \\ \Longrightarrow \ \frac{2440}{10}\\\ \\ \Longrightarrow 244 \\\ \\

Option (a) is the solution

(15) 98.54 x 10

(a) 985400
(b) 985.4
(c) 9854
(d) 98540