In his post we will learn dividing fractions by fractions.

First we will learn step by step process to divide the two fractions. After than we will move on to solve some related questions.

**Steps to divide fractions**

Suppose two fractions are given to you.

And you have to divide the 1st fraction by 2nd fraction

You can easily divide the two fraction by following the below steps:

**Step 01**

Convert the division into multiplication by inversing the right fraction

**Step 02**

Multiply the numerator of both fraction

**Step 03**

Multiply the denominator of both the fraction

**Step 04**

Reduce the numerator and denominator to lowest terms (if possible)

This is how you divide fraction with fraction.

Let us study some example to understand the process fully

**Example 01**

Divide the below fractions

Do the following steps

**Step 01**

Convert the division into multiplication by inversing fraction on right

**Step 02**

Multiply the numerator and denominator separately

**Step 03**

Reduce the fraction to its lowest terms

Divide both numerator and denominator by 12

Hence 1 is the solution of given problem

**Example 02**

Divide the below fractions

**Step 01**

Convert the multiplication into division by inverting the right fraction

**Step 02**

Multiply the numerator and denominator separately

**Step 03**

Reduce the fraction to lowest order

Divide both numerator and denominator by 30

Here 1 is the solution of given problem

**Example 03**

Calculate the division of two fraction

Do the following steps**Step 01**

Convert the division into multiplication by inverting right fraction

**Step 02**

Multiply the numerator and denominator separately

**Step 03**

Reduce the fraction to its lowest terms

Divide both numerator and denominator by 2

Hence 14/3 is the solution

**Division of Fractions Questions**

Below is the collection of dividing fraction questions.

Your job is to read the question and solve the division step by step.

All the questions are to the standard of Grade 5.

Each question is provided with solution for your reference.

**Divide the given fractions**

Two fractions are given in the questions.

Divide them and find the right answer

(a) \frac{6}{5} \ \div \ \frac{6}{7}\\\ \\ Read Solution

**Step 01**

Convert division into multiplication by inverting the right side fraction

\Longrightarrow \ \frac{6}{5} \ \times \ \frac{7}{6}

**Step 02**

Multiply the numerator and denominator separately

\Longrightarrow \ \frac{6\times 7}{5\times 6}\\\ \\ \Longrightarrow \frac{42}{30}

**Step 03**

If possible, simplify the fraction

Divide both numerator and denominator by 6

Hence, \frac{7}{5} is the solution

(b) \frac{4}{9} \ \div \ \frac{2}{11} \\\ \\ Read Solution

**Step 01**

Convert division into multiplication by inverting the right side fraction

\Longrightarrow \ \frac{4}{9} \ \times \ \frac{11}{2}

**Step 02**

Multiply the numerator and denominator separately

\Longrightarrow \ \frac{4\times 11}{9\times 2}\\\ \\ \Longrightarrow \frac{44}{18}

**Step 03**

If possible, simplify the fraction

Divide both numerator and denominator by 2

Hence, \frac{22}{9} is the solution

(c) \frac{5}{3} \ \div \ \frac{9}{2} \\\ \\ Read Solution

**Step 01**

Convert division into multiplication by inverting the right side fraction

\Longrightarrow \ \frac{5}{3} \ \times \ \frac{2}{9}

**Step 02**

Multiply the numerator and denominator separately

\Longrightarrow \ \frac{5\times 2}{3\times 9}\\\ \\ \Longrightarrow \frac{10}{27}

**Step 03**

If possible, simplify the fraction

Further simplification is not possible

Hence, \frac{10}{27} is the solution

(d) \frac{13}{2} \ \div \ \frac{9}{1} \\\ \\ Read Solution

**Step 01**

Convert division into multiplication by inverting the right side fraction

\Longrightarrow \ \frac{13}{2} \ \times \ \frac{1}{9}

**Step 02**

Multiply the numerator and denominator separately

\Longrightarrow \ \frac{13\times 1}{2\times 9}\\\ \\ \Longrightarrow \frac{13}{18}

**Step 03**

If possible, simplify the fraction

Further simplification is not possible

Hence, \frac{13}{18} is the solution

(e) \frac{5}{3} \ \div \ \frac{20}{5} \\\ \\ Read Solution

**Step 01**

Convert division into multiplication by inverting the right side fraction

\Longrightarrow \ \frac{5}{3} \ \times \ \frac{5}{20}

**Step 02**

Multiply the numerator and denominator separately

\Longrightarrow \ \frac{5\times 5}{3\times 20}\\\ \\ \Longrightarrow \frac{25}{60}

**Step 03**

If possible, simplify the fraction

Divide numerator and denominator by 5

Hence, \frac{5}{12} is the solution

(f) \frac{1}{9} \ \div \ \frac{9}{1} \\\ \\ Read Solution

**Step 01**

Convert division into multiplication by inverting the right side fraction

\Longrightarrow \ \frac{1}{9} \ \times \ \frac{1}{9}

**Step 02**

Multiply the numerator and denominator separately

\Longrightarrow \ \frac{1\times 1}{9\times 9}\\\ \\ \Longrightarrow \frac{1}{81}

**Step 03**

If possible, simplify the fraction

Further simplification is not possible

Hence, \frac{1}{81} is the solution

(g) \frac{12}{4} \ \div \ \frac{5}{16} \\\ \\ Read Solution

**Step 01**

Convert division into multiplication by inverting the right side fraction

\Longrightarrow \ \frac{12}{4} \ \times \ \frac{16}{5}

**Step 02**

Multiply the numerator and denominator separately

\Longrightarrow \ \frac{12\times 16}{4\times 5}\\\ \\ \Longrightarrow \frac{192}{20}

**Step 03**

If possible, simplify the fraction

Divide numerator and denominator by 4

Hence, \frac{48}{5} is the solution

(h) \frac{3}{7} \ \div \ \frac{9}{7} \\\ \\ Read Solution

**Step 01**

Convert division into multiplication by inverting the right side fraction

\Longrightarrow \ \frac{3}{7} \ \times \ \frac{7}{9}

**Step 02**

Multiply the numerator and denominator separately

\Longrightarrow \ \frac{3\times 7}{7\times 9}\\\ \\ \Longrightarrow \frac{21}{63}

**Step 03**

If possible, simplify the fraction

Divide numerator and denominator by 21

Hence, \frac{1}{3} is the solution

(h) \frac{5}{10} \ \div \ \frac{6}{12} \\\ \\ Read Solution

**Step 01**

Convert division into multiplication by inverting the right side fraction

\Longrightarrow \ \frac{5}{10} \ \times \ \frac{12}{6}

**Step 02**

Multiply the numerator and denominator separately

\Longrightarrow \ \frac{5\times 12}{10\times 6}\\\ \\ \Longrightarrow \frac{60}{60}

**Step 03**

If possible, simplify the fraction

Divide numerator and denominator by 60

Hence, 1 is the solution

(i) \frac{7}{11} \ \div \ \frac{1}{6}\\\ \\ Read Solution

**Step 01**

Convert division into multiplication by inverting the right side fraction

\Longrightarrow \ \frac{7}{11} \ \times \ \frac{6}{1}

**Step 02**

Multiply the numerator and denominator separately

\Longrightarrow \ \frac{7\times 6}{11\times 1}\\\ \\ \Longrightarrow \frac{42}{11}

**Step 03**

If possible, simplify the fraction

Further simplification is not possible

Hence, \frac{42}{11} is the solution

(j) \frac{5}{9} \ \div \ \frac{1}{2} \\\ \\ Read Solution

**Step 01**

Convert division into multiplication by inverting the right side fraction

\Longrightarrow \ \frac{5}{9} \ \times \ \frac{2}{1}

**Step 02**

Multiply the numerator and denominator separately

\Longrightarrow \ \frac{5\times 2}{9\times 1}\\\ \\ \Longrightarrow \frac{10}{9}

**Step 03**

If possible, simplify the fraction

Further simplification is not possible

Hence, \frac{10}{9} is the solution

(k) \frac{4}{8} \ \div \ \frac{2}{6} \\\ \\ Read Solution

**Step 01**

Convert division into multiplication by inverting the right side fraction

\Longrightarrow \ \frac{4}{8} \ \times \ \frac{6}{2}

**Step 02**

Multiply the numerator and denominator separately

\Longrightarrow \ \frac{4\times 6}{8\times 2}\\\ \\ \Longrightarrow \frac{24}{16}

**Step 03**

If possible, simplify the fraction

Divide both numerator and denominator by 8

Hence, \frac{3}{2} is the solution

(l) \frac{1}{6} \ \div \ \frac{3}{5} \\\ \\ Read Solution

**Step 01**

Convert division into multiplication by inverting the right side fraction

\Longrightarrow \ \frac{1}{6} \ \times \ \frac{5}{3}

**Step 02**

Multiply the numerator and denominator separately

\Longrightarrow \ \frac{1\times 5}{6\times 3}\\\ \\ \Longrightarrow \frac{5}{18}

**Step 03**

If possible, simplify the fraction

Further simplification is not possible

Hence, \frac{5}{18} is the solution

(m) \frac{0}{6} \ \div \ \frac{1}{8} \\\ \\ Read Solution

**Step 01**

Convert division into multiplication by inverting the right side fraction

\Longrightarrow \ \frac{0}{6} \ \times \ \frac{8}{1}

**Step 02**

Multiply the numerator and denominator separately

\Longrightarrow \ \frac{0\times 8}{6\times 1}\\\ \\ \Longrightarrow \frac{0}{6}

Hence 0 is the solution of the given problem

(n) \frac{10}{5} \ \div \ \frac{5}{15} \\\ \\ Read Solution

**Step 01**

Convert division into multiplication by inverting the right side fraction

\Longrightarrow \ \frac{10}{5} \ \times \ \frac{15}{5}

**Step 02**

Multiply the numerator and denominator separately

\Longrightarrow \ \frac{10\times 15}{5\times 5}\\\ \\ \Longrightarrow \frac{150}{25}

**Step 03**

If possible, simplify the fraction

Divide numerator and denominator by 25

Hence, 5 is the solution

(o) \frac{7}{21} \ \div \ \frac{14}{7} \\\ \\ Read Solution

**Step 01**

Convert division into multiplication by inverting the right side fraction

\Longrightarrow \ \frac{7}{21} \ \times \ \frac{7}{14}

**Step 02**

Multiply the numerator and denominator separately

\Longrightarrow \ \frac{7\times 7}{21\times 14}\\\ \\ \Longrightarrow \frac{49}{294}

**Step 03**

If possible, simplify the fraction

Divide numerator and denominator by 49

Hence, \frac{1}{6} is the solution