In his post we will learn dividing fractions by fractions.
First we will learn step by step process to divide the two fractions. After than we will move on to solve some related questions.
Steps to divide fractions
Suppose two fractions are given to you.
And you have to divide the 1st fraction by 2nd fraction
You can easily divide the two fraction by following the below steps:
Step 01
Convert the division into multiplication by inversing the right fraction
Step 02
Multiply the numerator of both fraction
Step 03
Multiply the denominator of both the fraction
Step 04
Reduce the numerator and denominator to lowest terms (if possible)
This is how you divide fraction with fraction.
Let us study some example to understand the process fully
Example 01
Divide the below fractions
Do the following steps
Step 01
Convert the division into multiplication by inversing fraction on right
Step 02
Multiply the numerator and denominator separately
Step 03
Reduce the fraction to its lowest terms
Divide both numerator and denominator by 12
Hence 1 is the solution of given problem
Example 02
Divide the below fractions
Step 01
Convert the multiplication into division by inverting the right fraction
Step 02
Multiply the numerator and denominator separately
Step 03
Reduce the fraction to lowest order
Divide both numerator and denominator by 30
Here 1 is the solution of given problem
Example 03
Calculate the division of two fraction
Do the following steps
Step 01
Convert the division into multiplication by inverting right fraction
Step 02
Multiply the numerator and denominator separately
Step 03
Reduce the fraction to its lowest terms
Divide both numerator and denominator by 2
Hence 14/3 is the solution
Division of Fractions Questions
Below is the collection of dividing fraction questions.
Your job is to read the question and solve the division step by step.
All the questions are to the standard of Grade 5.
Each question is provided with solution for your reference.
Divide the given fractions
Two fractions are given in the questions.
Divide them and find the right answer
(a) \frac{6}{5} \ \div \ \frac{6}{7}\\\ \\ Read Solution
Step 01
Convert division into multiplication by inverting the right side fraction
\Longrightarrow \ \frac{6}{5} \ \times \ \frac{7}{6}
Step 02
Multiply the numerator and denominator separately
\Longrightarrow \ \frac{6\times 7}{5\times 6}\\\ \\ \Longrightarrow \frac{42}{30}
Step 03
If possible, simplify the fraction
Divide both numerator and denominator by 6
Hence, \frac{7}{5} is the solution
(b) \frac{4}{9} \ \div \ \frac{2}{11} \\\ \\ Read Solution
Step 01
Convert division into multiplication by inverting the right side fraction
\Longrightarrow \ \frac{4}{9} \ \times \ \frac{11}{2}
Step 02
Multiply the numerator and denominator separately
\Longrightarrow \ \frac{4\times 11}{9\times 2}\\\ \\ \Longrightarrow \frac{44}{18}
Step 03
If possible, simplify the fraction
Divide both numerator and denominator by 2
Hence, \frac{22}{9} is the solution
(c) \frac{5}{3} \ \div \ \frac{9}{2} \\\ \\ Read Solution
Step 01
Convert division into multiplication by inverting the right side fraction
\Longrightarrow \ \frac{5}{3} \ \times \ \frac{2}{9}
Step 02
Multiply the numerator and denominator separately
\Longrightarrow \ \frac{5\times 2}{3\times 9}\\\ \\ \Longrightarrow \frac{10}{27}
Step 03
If possible, simplify the fraction
Further simplification is not possible
Hence, \frac{10}{27} is the solution
(d) \frac{13}{2} \ \div \ \frac{9}{1} \\\ \\ Read Solution
Step 01
Convert division into multiplication by inverting the right side fraction
\Longrightarrow \ \frac{13}{2} \ \times \ \frac{1}{9}
Step 02
Multiply the numerator and denominator separately
\Longrightarrow \ \frac{13\times 1}{2\times 9}\\\ \\ \Longrightarrow \frac{13}{18}
Step 03
If possible, simplify the fraction
Further simplification is not possible
Hence, \frac{13}{18} is the solution
(e) \frac{5}{3} \ \div \ \frac{20}{5} \\\ \\ Read Solution
Step 01
Convert division into multiplication by inverting the right side fraction
\Longrightarrow \ \frac{5}{3} \ \times \ \frac{5}{20}
Step 02
Multiply the numerator and denominator separately
\Longrightarrow \ \frac{5\times 5}{3\times 20}\\\ \\ \Longrightarrow \frac{25}{60}
Step 03
If possible, simplify the fraction
Divide numerator and denominator by 5
Hence, \frac{5}{12} is the solution
(f) \frac{1}{9} \ \div \ \frac{9}{1} \\\ \\ Read Solution
Step 01
Convert division into multiplication by inverting the right side fraction
\Longrightarrow \ \frac{1}{9} \ \times \ \frac{1}{9}
Step 02
Multiply the numerator and denominator separately
\Longrightarrow \ \frac{1\times 1}{9\times 9}\\\ \\ \Longrightarrow \frac{1}{81}
Step 03
If possible, simplify the fraction
Further simplification is not possible
Hence, \frac{1}{81} is the solution
(g) \frac{12}{4} \ \div \ \frac{5}{16} \\\ \\ Read Solution
Step 01
Convert division into multiplication by inverting the right side fraction
\Longrightarrow \ \frac{12}{4} \ \times \ \frac{16}{5}
Step 02
Multiply the numerator and denominator separately
\Longrightarrow \ \frac{12\times 16}{4\times 5}\\\ \\ \Longrightarrow \frac{192}{20}
Step 03
If possible, simplify the fraction
Divide numerator and denominator by 4
Hence, \frac{48}{5} is the solution
(h) \frac{3}{7} \ \div \ \frac{9}{7} \\\ \\ Read Solution
Step 01
Convert division into multiplication by inverting the right side fraction
\Longrightarrow \ \frac{3}{7} \ \times \ \frac{7}{9}
Step 02
Multiply the numerator and denominator separately
\Longrightarrow \ \frac{3\times 7}{7\times 9}\\\ \\ \Longrightarrow \frac{21}{63}
Step 03
If possible, simplify the fraction
Divide numerator and denominator by 21
Hence, \frac{1}{3} is the solution
(h) \frac{5}{10} \ \div \ \frac{6}{12} \\\ \\ Read Solution
Step 01
Convert division into multiplication by inverting the right side fraction
\Longrightarrow \ \frac{5}{10} \ \times \ \frac{12}{6}
Step 02
Multiply the numerator and denominator separately
\Longrightarrow \ \frac{5\times 12}{10\times 6}\\\ \\ \Longrightarrow \frac{60}{60}
Step 03
If possible, simplify the fraction
Divide numerator and denominator by 60
Hence, 1 is the solution
(i) \frac{7}{11} \ \div \ \frac{1}{6}\\\ \\ Read Solution
Step 01
Convert division into multiplication by inverting the right side fraction
\Longrightarrow \ \frac{7}{11} \ \times \ \frac{6}{1}
Step 02
Multiply the numerator and denominator separately
\Longrightarrow \ \frac{7\times 6}{11\times 1}\\\ \\ \Longrightarrow \frac{42}{11}
Step 03
If possible, simplify the fraction
Further simplification is not possible
Hence, \frac{42}{11} is the solution
(j) \frac{5}{9} \ \div \ \frac{1}{2} \\\ \\ Read Solution
Step 01
Convert division into multiplication by inverting the right side fraction
\Longrightarrow \ \frac{5}{9} \ \times \ \frac{2}{1}
Step 02
Multiply the numerator and denominator separately
\Longrightarrow \ \frac{5\times 2}{9\times 1}\\\ \\ \Longrightarrow \frac{10}{9}
Step 03
If possible, simplify the fraction
Further simplification is not possible
Hence, \frac{10}{9} is the solution
(k) \frac{4}{8} \ \div \ \frac{2}{6} \\\ \\ Read Solution
Step 01
Convert division into multiplication by inverting the right side fraction
\Longrightarrow \ \frac{4}{8} \ \times \ \frac{6}{2}
Step 02
Multiply the numerator and denominator separately
\Longrightarrow \ \frac{4\times 6}{8\times 2}\\\ \\ \Longrightarrow \frac{24}{16}
Step 03
If possible, simplify the fraction
Divide both numerator and denominator by 8
Hence, \frac{3}{2} is the solution
(l) \frac{1}{6} \ \div \ \frac{3}{5} \\\ \\ Read Solution
Step 01
Convert division into multiplication by inverting the right side fraction
\Longrightarrow \ \frac{1}{6} \ \times \ \frac{5}{3}
Step 02
Multiply the numerator and denominator separately
\Longrightarrow \ \frac{1\times 5}{6\times 3}\\\ \\ \Longrightarrow \frac{5}{18}
Step 03
If possible, simplify the fraction
Further simplification is not possible
Hence, \frac{5}{18} is the solution
(m) \frac{0}{6} \ \div \ \frac{1}{8} \\\ \\ Read Solution
Step 01
Convert division into multiplication by inverting the right side fraction
\Longrightarrow \ \frac{0}{6} \ \times \ \frac{8}{1}
Step 02
Multiply the numerator and denominator separately
\Longrightarrow \ \frac{0\times 8}{6\times 1}\\\ \\ \Longrightarrow \frac{0}{6}
Hence 0 is the solution of the given problem
(n) \frac{10}{5} \ \div \ \frac{5}{15} \\\ \\ Read Solution
Step 01
Convert division into multiplication by inverting the right side fraction
\Longrightarrow \ \frac{10}{5} \ \times \ \frac{15}{5}
Step 02
Multiply the numerator and denominator separately
\Longrightarrow \ \frac{10\times 15}{5\times 5}\\\ \\ \Longrightarrow \frac{150}{25}
Step 03
If possible, simplify the fraction
Divide numerator and denominator by 25
Hence, 5 is the solution
(o) \frac{7}{21} \ \div \ \frac{14}{7} \\\ \\ Read Solution
Step 01
Convert division into multiplication by inverting the right side fraction
\Longrightarrow \ \frac{7}{21} \ \times \ \frac{7}{14}
Step 02
Multiply the numerator and denominator separately
\Longrightarrow \ \frac{7\times 7}{21\times 14}\\\ \\ \Longrightarrow \frac{49}{294}
Step 03
If possible, simplify the fraction
Divide numerator and denominator by 49
Hence, \frac{1}{6} is the solution