Difference of cubes


In this chapter we will learn difference of cubes formula and some solved examples related to the concept.

Difference of Cubes formula


The formula for difference of cube is given as;

\mathtt{a^{3} -b^{3} =( a-b)\left( a^{2} +ab+b^{2}\right)}


The formula is important. Memorize it to solve algebra related problems.

Proof of Difference of Cube formula


Let the given expression is \mathtt{5^{3} -3^{3}}


Finding value using simple calculation;

\mathtt{\Longrightarrow \ 5^{3} -3^{3}}\\\ \\ \mathtt{\Longrightarrow \ 125\ -\ 27}\\\ \\ \mathtt{\Longrightarrow \ 98}

Hence, 98 is the value of given expression.



Now let’s find value using the formula;

\mathtt{a^{3} -b^{3} =( a-b)\left( a^{2} +ab+b^{2}\right)}

Putting the values;

\mathtt{\Longrightarrow \ 5^{3} -3^{3}}\\\ \\ \mathtt{\Longrightarrow \ ( 5-3)\left( 5^{2} +5.3+3^{2}\right)}\\\ \\ \mathtt{\Longrightarrow \ 2.\ ( 25+15+9)}\\\ \\ \mathtt{\Longrightarrow \ 2.\ 49}\\\ \\ \mathtt{\Longrightarrow \ 98\ }

The value of given expression is 98.

In both the methods we got the same value, hence the formula is valid.

Difference of Cubes – Solved Problems


Example 01
Expand \mathtt{343\ x^{3} -64\ y^{3}}

Solution
The expression can be written as;

\mathtt{\Longrightarrow \ 343\ x^{3} -64\ y^{3}}\\\ \\ \mathtt{\Longrightarrow \ ( 7x)^{3} -( 4y)^{3}}


The expression \mathtt{( 7x)^{3} -( 4y)^{3}} is in the form of \mathtt{a^{3} -b^{3}}

We will use the formula;
\mathtt{a^{3} -b^{3} =( a-b)\left( a^{2} +ab+b^{2}\right)}


Putting the values, we get;

\mathtt{\Longrightarrow \ ( 7x)^{3} -( 4y)^{3}}\\\ \\ \mathtt{\Longrightarrow \ ( 7x-4y)\left(( 7x)^{2} +7x.4y+( 4y)^{2}\right)}\\\ \\ \mathtt{\Longrightarrow \ ( 7x-4y) .\left( 49x^{2} +28xy+49y^{2}\right)}

Hence, the above expression is the expanded form of given problem.

Example 02
Expand \mathtt{48x^{3} -750y^{3}}

Solution
The expression can be written as:

\mathtt{\Longrightarrow \ 48x^{3} -750y^{3}}\\\ \\ \mathtt{\Longrightarrow \ 6\left( 8x^{3} -125y^{3}\right)}\\\ \\ \mathtt{\Longrightarrow \ 6\left(( 2x)^{3} -( 5y)^{3}\right)}


The given term is in the form of \mathtt{a^{3} -b^{3}}

We will use the formula;
\mathtt{a^{3} -b^{3} =( a-b)\left( a^{2} +ab+b^{2}\right)}


Putting the values;

\mathtt{\Longrightarrow \ 6\left(( 2x)^{3} -( 5y)^{3}\right)}\\\ \\ \mathtt{\Longrightarrow \ 6\ ( 2x-5y)\left(( 2x)^{2} +2x.5y+( 5y)^{2}\right)}\\\ \\ \mathtt{\Longrightarrow \ 6( 2x-5y) .\left( 4x^{2} +10xy+25y^{2}\right)}

Hence, the above expression is expanded form of given problem.

Example 03
Fine the value of \mathtt{13^{3} -10^{3}} using difference of cube formula.

Solution
The expression \mathtt{13^{3} -10^{3}} is in the form of \mathtt{a^{3} -b^{3}}

We will use the formula;
\mathtt{a^{3} -b^{3} =( a-b)\left( a^{2} +ab+b^{2}\right)}


Putting the values;

\mathtt{\Longrightarrow \ 13^{3} -10^{3}}\\\ \\ \mathtt{\Longrightarrow \ ( 13-10)\left(( 13)^{2} +13.10+( 10)^{2}\right)}\\\ \\ \mathtt{\Longrightarrow \ ( 3) .( 169\ +130+100)}\\\ \\ \mathtt{\Longrightarrow \ 1197}

Hence, 1197 is the value of given expression.

Example 04
Find the value of \mathtt{25^{3} -20^{3}}

Solution
The expression \mathtt{25^{3} -20^{3}} is in the form of \mathtt{a^{3} -b^{3}}

We will use the formula;
\mathtt{a^{3} -b^{3} =( a-b)\left( a^{2} +ab+b^{2}\right)}


Putting the values;

\mathtt{\Longrightarrow \ 25^{3} -20^{3}}\\\ \\ \mathtt{\Longrightarrow \ ( 25-20)\left(( 25)^{2} +25.20+( 20)^{2}\right)}\\\ \\ \mathtt{\Longrightarrow \ ( 5) .( 625\ +500+400)}\\\ \\ \mathtt{\Longrightarrow \ 7625}

Hence, 7625 is the value of given expression.

Example 05
Expand \mathtt{1024x^{3} -16y^{3}}

Solution
The expression can be written as;

\mathtt{\Longrightarrow \ 1024x^{3} -16y^{3}}\\\ \\ \mathtt{\Longrightarrow \ 2\left( 512x^{3} -8y^{3}\right)}\\\ \\ \mathtt{\Longrightarrow \ 2\ \left(( 8x)^{3} -( 2y)^{3}\right)}

The expression is in form of \mathtt{a^{3} -b^{3}}

We will use the formula;
\mathtt{a^{3} -b^{3} =( a-b)\left( a^{2} +ab+b^{2}\right)}


Putting the values;

\mathtt{\Longrightarrow \ 2\ \left(( 8x)^{3} -( 2y)^{3}\right)}\\\ \\ \mathtt{\Longrightarrow 2( 8x-2y)\left(( 8x)^{2} +8x.2y+( 2y)^{2}\right)}\\\ \\ \mathtt{\Longrightarrow \ 2( 8x-2y) .\left( 16x^{2} \ +16xy+4y^{2}\right)}

Hence, the above expression is the expanded form of given question.

Formula for \mathtt{a^{3} +b^{3} +c^{3} -3abc}

Leave a Comment

Your email address will not be published. Required fields are marked *

You cannot copy content of this page