In this chapter, we will learn step by step method to convert percentage value into decimal number using solved examples.

At the end of the chapter, some solved problems are given for further practice.

## How to convert percentage into decimals ?

To convert the percentage into decimal number, follow the below step;

(a) **Convert percentage into fraction** by dividing it by 100.

(b) **Convert the fraction into decimal by replacing 100 denominator by decimal point**.

The denominator 100 can be divided by counting two digit from right of numerator and then placing decimal point.

For example;

\mathtt{\frac{64}{100} \Longrightarrow \ 0.64}\\\ \\ \mathtt{\frac{231}{100} \Longrightarrow \ 2.31}\\\ \\ \mathtt{\frac{74.5}{100} \Longrightarrow \ 0.745}

Hence using the above two steps, you can convert any percentage data into the decimal number.

Given below are some examples for better understanding.

### Percentage to decimal – Solved examples

**Example 01**

Convert 35% into decimal number

**Solution**

Follow the below step;

(a) Convert the **percentage into fraction** by dividing it with 100.

\mathtt{35\%\ =\ \frac{35}{100}}

(b) **Convert the fraction into decimal** by completing the division.

\mathtt{\frac{35}{100} \Longrightarrow \ 0.35}

Hence, **0.35 is the required solution**.

**Example 02**

Convert 76% into decimal.

**Solution**

(a) Convert **percentage into fraction by dividing it by 100.**

\mathtt{76\%\ =\ \frac{76}{100}}

(b) Divide the number by 100 to **convert fraction into decimal.**

\mathtt{\frac{76}{100} \Longrightarrow \ 0.76}

Hence, **0.76 is the required solution.**

**Example 03**

Convert 5% into decimal number.

**Solution**

Follow the below steps;

(a) Convert **percentage into fraction by dividing it by 100.**

\mathtt{5\%\ =\ \frac{5}{100}}

(b) Now** divide the number by 100 to convert into decimal.**

\mathtt{\frac{5}{100} \Longrightarrow \ 0.05}

Hence, **0.05 is the solution.**

**Example 04**

Convert 9.7% into decimal

**Solution**

Follow the below steps;

(a) First **convert the decimal percentage into simple percentage**.

\mathtt{\Longrightarrow 9.7\%\ }\\\ \\ \mathtt{\Longrightarrow \frac{97}{10} \%}

(b) Convert **percentage into fraction by dividing it by 100.**

\mathtt{\ \Longrightarrow \ \frac{97}{10} \%}\\\ \\ \mathtt{\ \Longrightarrow \ \frac{97}{100\times 10}}\\\ \\ \mathtt{\Longrightarrow \ \frac{97}{1000}}

(c) Do the **division to convert the number into decimal.**

\mathtt{\frac{97}{1000} \Longrightarrow \ 0.097}

Hence, **0.097 is the required solution.**

**Example 05**

Convert 123% into decimal number

**Solution**

(a) Convert the **percentage into fraction by dividing it by 100.**

\mathtt{123\%\Longrightarrow \frac{123}{100}}

(b) Now **divide the fraction to convert into decimal.**

\mathtt{\frac{123}{100} \Longrightarrow \ 1.23}

Hence, **1.23 is the required decimal number.**

I hope you understood the above examples. Given below are some problems for your practice.

## Percentage into decimals – Practice problems

**(01) Convert the below percentages into decimal number**.

(a) 5%

(b) 71%

(c) 105%

(d) 22.5%

(e) 150%

(f) 1%

(g) 0.14%

(h) 16%

(i) 10%

(j) \mathtt{\frac{3}{5} \ \%}

**(a) 5%**

\mathtt{5\%\Longrightarrow \frac{5}{100}}\\\ \\ \mathtt{\frac{5}{100} \ \Longrightarrow \ 0.05}

Hence, **0.05 is the required decimal number.**

**(b) 71%**

\mathtt{71\%\Longrightarrow \frac{71}{100}}\\\ \\ \mathtt{\frac{71}{100} \ \Longrightarrow \ 0.71}

Hence, **0.71 is the required decimal number.**

**(c) 105%**

\mathtt{105\%\Longrightarrow \frac{105}{100}}\\\ \\ \mathtt{\frac{105}{100} \ \Longrightarrow \ 1.05}

Hence, **1.05 is the required decimal number.**

**(d) 22.5%**

\mathtt{22.5\%\Longrightarrow \frac{225}{10} \%}\\\ \\ \mathtt{\frac{225}{10} \%\ \Longrightarrow \ \frac{225}{1000}}\\\ \\ \mathtt{\frac{225}{1000} \ \Longrightarrow \ 0.225}

Hence, **0.225 is the required decimal.**

**(e) 150%**

\mathtt{150\%\ \Longrightarrow \ \frac{150}{100}}\\\ \\ \mathtt{\frac{150}{100} \ \Longrightarrow \ 1.5}

Hence, **1.5 is the required decimal number**.

**(f) 1%**

\mathtt{1\%\ \Longrightarrow \ \frac{1}{100}}\\\ \\ \mathtt{\frac{1}{100} \ \Longrightarrow \ 0.01}

Hence, **0.01 is the solution.**

**(g)** **0.14%**

\mathtt{0.14\%\Longrightarrow \frac{14}{100} \%}\\\ \\ \mathtt{\frac{14}{100} \%\ \Longrightarrow \ \frac{14}{10000}}\\\ \\ \mathtt{\frac{14}{10000} \ \Longrightarrow \ 0.0014}

Hence, **0.0014 is the solution.**

**(h) 16%**

\mathtt{16\ \%\ \Longrightarrow \ \frac{16}{100}}\\\ \\ \mathtt{\frac{16}{100} \ \Longrightarrow \ 0.16}

Hence,** 0.16 is the solution.**

**(i) 10%**

\mathtt{10\ \%\ \Longrightarrow \ \frac{10}{100}}\\\ \\ \mathtt{\frac{10}{100} \ \Longrightarrow \ 0.1}

Hence, **0.1 is the required decimal.**

**(j)** \mathtt{\frac{3}{5} \ \%}

\mathtt{\Longrightarrow \ \frac{3}{5} \ \%\ }\\\ \\ \mathtt{\Longrightarrow \ \frac{3}{5\times 100}}\\\ \\ \mathtt{\Longrightarrow \ \frac{3}{500}}

Now divide numerator by denominator;

\mathtt{\ \frac{3}{500} \ \Longrightarrow \ 0.06}

Hence, **0.06 is the required decimal.**