Area Questions – Quantitative Aptitude

(01) A circle is inscribed in a square, An equilateral triangle of side 4 \sqrt{3} cm is inscribed in that circle. The length of the diagonal of the square (in cm) is

A) 4 \sqrt{2}\\ \\ B) 8 \\ \\ C) 8 \sqrt{2} \\ \\ D) 16 \\\ \\ Read Solution
Area of circle Quantitative Aptitude

Side of equilateral triangle=4 \sqrt{3} \ cm

Circumradius of triangle= \frac{side}{\sqrt{3}} \\ \\ = \frac{4\sqrt{3}}{\sqrt{3}} =4\ cm

We know that,
side of square= 2 * circumradius
=> 2 * 4 = 8

To find diagonal of square
Applying Pythagoras theorem,
Diagonal^{2}= 8^{2} +8^{2} \\\ \\ => 64+64 \ = 128 \ = 8\sqrt{2} \ cm

Hence option, C) is correct

(02) The area of circle whose radius is 6 cm is trisected by two concentric circles. The radius of the smallest circle is
A) 2 \sqrt{3} \ cm \\\ \\ B) 2 \sqrt{6} \ cm \\\ \\ C) 2 \ cm \\\ \\ D) 3 \ cm \\\ \\ Read Solution

Area Quantitative Aptitude Questions for competition exams like GRE, GMAT, Math Olympiad, CAT. CMAT, XAT, NMAT, SNAP, SSC, SSC-CGL, SSC-CHSL, RRB, NDA, AFCAT

radius of circle=6 cm

Area of C circle= \pi r^{2} \\\ \\ ⟹ {\pi ( 6)^{2}} \\\ \\ ⟹ 36 \pi \ cm^{2}

Since given circle is trisected = divided into 3 equal parts

Area of each part= \frac{36\pi }{3}=12π cm²

area of each circle= \pi r^{2} \\\ \\ 12 \pi =\pi r^{2} \\\ \\  r ^{2}=12 \\\ \\ r=2 \sqrt{3} \ cm

Hence option A) is correct.

(03) A circle is inscribed in an equilateral triangle of side 8 cm. The area of the portion between the triangle and the circle is
A)  11 \ cm^{2} \\\ \\ B)  10.95 \ cm^{2} \\\ \\ C) 10 \ cm^{2} \\\ \\ D) 10.50 \ cm^{2} \\\ \\ Read Solution

Area Quantitative Aptitude Questions

given side of triangle=8 cm

inradius of circle= \frac{side}{2\sqrt{3}}\\\ \\ =\frac{8}{2\sqrt{3}} \\\ \\ =\frac{4}{\sqrt{3}}

area of circle= \pi r^{2} \\\ \\ = {\pi \left(\frac{4}{\sqrt{3}}\right)^{2}} \\\ \\ = \frac{22}{7} \times \frac{16}{3}

required area=area of equilateral triangle – area of circle

= \frac{\sqrt{3}}{4}( 8)^{2}- \frac{22}{7} \times \frac{16}{3} \\\ \\ = \frac{\sqrt{3}}{4} \times \ 64 - \frac{22}{7} \times \frac{16}{3} \\\ \\ = \ 16 \sqrt{3} -16.76 \\\ \\ =16 \times 1.73-16.76\ \\\ \\ = 27.68 - 16.76 =10.92 cm ^{2}\\\ \\ Hence 10.92\approx 10.95\

Thus option B) is correct

(04) The circumference of a circle is 11 cm and the angle of a sector of the circle is 60 \degree . The area of the sector is

A) 1 \frac{29}{48} \ \ cm^{2} \\\ \\ B) 2 \frac{29}{48} \ \ cm^{2} \\\ \\ C) 1 \frac{27}{48} \ \ cm^{2} \\\ \\ D) 2 \frac{27}{48} \ \ cm^{2} \\\ \\ Read Solution
Quantitative Aptitude Questions for MBA and Government exams

Circumference=11 cm

2 \pi r=11 \\\ \\ 2 \frac{22}{7} r=11 \\\ \\ r= \frac{7}{4} \ cm \\\ \\

area of sector= \frac{\theta }{360\degree } \times \pi r^{2} \\\ \\ = \frac{60}{360} \times \frac{22}{7} \times \frac{7}{4} \times \frac{7}{4} \\\ \\ = \frac{77}{48} =1\frac{29}{48} \ cm^{2}

Hence option A) is correct.

(05) The sides of a triangle are 6 cm, 8 cm, and 10 cm. The area of the greatest square that can be inscribed in it, is

A) 18 sq. cm  
             
B) 15 sq. cm 
               
C)  \frac{2304}{49} sq. cm
        
D) \frac{576}{49} sq. cm

Read Solution


Solution

Area related quantitative aptitude questions for GMAT, GRE, CAT, CMAT, NMAT, SNAP, SSC, SSC-CHSL, SSC-CGL, NABARD, IBPS, Bank Exams


Since the given sides of triangle denotes that it is right angled triangle.perpendicular at AC.

side\ of\ square= \frac{perpendicular\times base}{perpendicular\ +\ base}\\\ \\ =\frac{8\times 6}{8+6}\\\ \\ =\frac{48}{14}\\\ \\ =\frac{24}{7} \\\ \\ \\\ \\ area\ of\ square= \frac{24}{7} \times \frac{24}{7} =\frac{576}{49} \ cm^{2} \\\ \\

Hence, option D) is correct.

(06) The length of a side of an equilateral triangle is 8 cm. The area of the region lying between the circumcircle and the incircle of the triangle is

A) 50 \frac{1}{7}\ cm ^{2} \\\ \\ B) 50 \frac{2}{7}\ cm ^{2}  \\\ \\  C) 75\frac{1}{7}\ cm ^{2} \\\ \\  D) 75\frac{2}{7}\ cm ^{2}\\ \\ Read Solution
Incircle and Circumcircle questions for competition exams
Radius\ of\ circumcircle\ = \frac{8}{\sqrt{3}}cm \\\ \\ Radius\ of\ incircle\ = \frac{8}{2\sqrt{3}} = \frac{4}{\sqrt{3}}\ cm \\\ \\ Area\ bounded\ by\ the\ circle\ = \pi \left(( radius\ circumcircle)^{2}\\ \\ - ( radius\ incircle)^{2}\right) \\\ \\ \ = \pi \left(\left(\frac{8}{\sqrt{3}}\right)^{2} - \left(\frac{4}{\sqrt{3}}\right)^{2}\right)\\\ \\ \ = \frac{22}{7} \times \left(\frac{64}{3} - \frac{16}{3}\right) \\\ \\ = \frac{22}{7} \times \left( \frac{64-16}{3}\right) \\\ \\ =\frac{22}{7} \times \frac{48}{3} \\\ \\ = \frac{22\times 16}{7} =50 \frac{2}{7} \ cm^{2}

Hence, option B) is correct.

(07) One acute angle of a right angled triangle is double the other.If the length of its hypotenuse is 10 cm, then its area is ?

A) \frac{25}{2}\sqrt{3} cm^{2} \\\ \\ B) 25\ cm ^{2} \\\ \\ C)25 \sqrt{3}\ cm ^{2}\\\ \\ D) \frac{75}{2} cm^{2} \\\ \\  Read Solution
Area related quantitative Aptitude questions
The\ angles\ of\ the\ given\ triangle\ are\ 90 \degree \\ \\ ,30 \degree and 60 \degree \\\ \\ sin 30 \degree = \frac{perpendicular}{hypotenuse} \\\ \\ we\ know\ that\ sin 30 \degree =\frac{1}{2}\\\ \\ Put\ this\ value\ in\ above\ formula\ we\ get \\\ \\ \frac{1}{2} =\frac{P}{10} \\\ \\ P= \frac{10}{2} =\ 5\ cm \\\ \\ Apply\ Pythagoras\ theorem\\\ \\ Hypotenuse ^{2}=perpendicular ^{2} +base^{2} \\\ \\ base ^{2}=hypotenuse ^{2} -perpendicular^{2} \\\ \\ base= \sqrt{hypotenuse^{2} -perpendicular^{2}} \\\ \\ base= \sqrt{10^{2} -5^{2}} \\\ \\ base= \sqrt{100-25} \ =\sqrt{75} =5\sqrt{3} \ cm \\\ \\ now\ calculate\ area \\\ \\ area= \frac{1}{2} \times base\times height \\\ \\ = \frac{1}{2} \times 5\sqrt{3} \times 5=\frac{25\sqrt{3}}{2}

hence option A) is correct.

(08) An equilateral triangle of side 6 cm has its corners cut off to form a regular hexagon. Area of this regular hexagon will be

A) 3 \sqrt{3} \\\ \\ B) 3 \sqrt{6} \\\ \\ C) 6 \sqrt{3} \\\ \\ D) \frac{5\sqrt{3}}{2}\\ \\ Read Solution
Equilateral Area questions for competition exams like SSC, SSC-CGL, SSC-CHSL, NABARD, NDA< AFCAT, Bank Exams, IBPS

Solution
Given each sides of equilateral triangle ABC=6 cm
AD = DI = IB = 2 cm

Similarly,
AE = EF = FC = 2 cm
BH = GH = HC = 2 cm

Area\ of\ hexagon\ = \frac{3\sqrt{3}}{2} side^{2} \\\ \\ = \frac{3\sqrt{3}}{2} \times 2 \times 2 \\\ \\ = 6\sqrt{3} cm ^{2}

Option (C) is the right answer

(09) The length of each side of an equilateral triangle is 14 \sqrt{3} cm. The area of the incircle (in cm) is

A) 450 
B) 308
C) 154 
D) 77

Read Solution
Area of triangle questions for quantitative aptitude exams like GRE, GMAT, SSC, SSC-CGL, SSC-CHSL ,CAT, MAT, CMAT, IBPS, Bank exams, AFCAT, RBI, Railway
radius\ of\ incircle\ = \frac{side}{2\sqrt{3}} \\\\ \\ = \frac{14\sqrt{3}}{2\sqrt{3}} =7\ cm \\\ \\ \\\ \\ area\ of \ incircle\ = \pi r^{2}\\\ \\ = \frac{22}{7} \times 7\times 7 \\\ \\ =154 cm ^{2}

Hence option C) is correct.

Leave a Comment

Your email address will not be published. Required fields are marked *

You cannot copy content of this page