This post is a collection of Area Questions from Quantitative Aptitude Syllabus. All the questions have been previously asked in competition exams before, hence are extremely important for your preparation.
All the questions are in Multiple Choice format with detailed explanation. Before attempting these questions, i strongly suggest to read the theory about the Area chapter first so that you get well prepared to handle the below questions on your own.
Area MCQ’s for Competition Exam
(01) The radius of circular wheel is 1.75 meter. The number of revolution it will make in travelling 11 km is?
(a) 800
(b) 900
(c) 1000
(d) 1200
Read Solution
option (c) is right
(02) The area of largest circle that can be drawn inside the square of side 28 cm is:
(a) 17248
(b) 784
(c) 8624
(d) 616
Read Solution
Solution
side\quad of\quad square\quad =\quad 28\quad cm\\ \\ diameter\quad of\quad circle\quad =\quad 28\quad cm\\ \\ radius\quad of\quad circle\quad =\quad 14\quad cm\\\ \\ \\\ \\ area\quad of\quad square\quad =\quad \pi { r }^{ 2 }\\\ \\ =\frac { 22 }{ 7 } \times \quad 14\quad \times \quad 14\quad \\\ \\ =44\quad \times \quad 14\quad =616\quad { cm }^{ 2 }
option (d) is right answer
(03) If the area of triangle with base 12 cm is equal to the area of square with side 12 cm, find the altitude of the triangle
(a) 12 cm
(b) 24 cm
(c) 18 cm
(d) 36 cm
Read Solution
Solution
Base of triangle = 12 cm
Side of square = 12 cm
option (b) is right answer
(04) The sides of a triangle are 3 cm, 4 cm and 5 cm. The area of triangle formed by joining midpoints of the triangle is?
a) 6
b) 3
c) 3/2
d) 3/4
Read Solution
Sides of Triangle ABC = 3 cm, 4 cm, 5 cm
Sides of Triangle DEF = 1.5 cm, 2 cm and 2.5 cm
option (c) is correct
(05) The area of a sector of a circle of radius 5 cm, formed by an arc of length 3.5 cm is?
(a) 8.5 sq cm
(b) 8.75 sq cm
(c) 7.75 sq cm
(d) 7.5 sq cm
Read Solution
Solution
radius = 5 cm
Length of arc = 3.5 cm
option (b) is the right answer
(06) From \ a \ point\ in\ the\ interior\ of\ an\ equilateral\ triangle \\ \\ the\ perpendicular\ distance\ of\ the\ sides\ are\ \sqrt{3\ } \ cm\ ,\ 2\sqrt{3\ } \ cm\ and\ 5\sqrt{3} \ cm.\\ \\ The\ perimeter\ ( in\ cm\ ) \ of\ the\ triangle\ is\\\ \\ A) 64 B) 32\ \ C) 48 D) 24 \\\ \\
Read Solution(07) The circumference of a circle is 100 cm. The side of a square inscribed in the circle is?
A) \frac{100\sqrt{2}}{\pi } cm B) \frac{50\sqrt{2}}{\pi } cm \\\ \\ C) \frac{100}{\pi } cm D) 50\sqrt{2} cm \\\ \\ Read Solution(08) The area of the largest triangle that can be inscribed in a semicircle of radius r cm
A) 2r\ cm^{2} B) r ^{2} \ cm^{2} \\\ \\ C) 2\ cm ^{2} D) \frac{1}{2} r^{2} \ cm^{2} \\\ \\ Read Solution(09) The area of the greatest circle, which can be inscribed in a square whose perimeter is 120 cm, is 120 cm
A) \frac{22}{7} \times ( 15)^{2} \ cm^{2} B) \frac{22}{7} \times \left(\frac{7}{2}\right)^{2} \ cm^{2} \\\ \\ C) \frac{22}{7} \times \left(\frac{15}{2}\right)^{2} \ cm^{2} D) \frac{22}{7} \times \left(\frac{9}{2}\right)^{2} \ cm^{2} \\\ \\ Read Solution(10) The area of the incircle of an equilateral triangle of side 42 cm is
A) 231\ cm ^{2} B) 462\ cm ^{2} \\\ \\ C) 22 \sqrt{3\ }\ cm^{2} D) 924\ cm ^{2} \\\ \\ Read SolutionWe draw the equilateral triangle ABC with the center O and the radius r of the incircle.
Thus, AB=BC=CA=42 cm.
From the figure, AB, BC and CA are tangents to the circle at M, N and P.
Thus, OM=ON=OP=r
Area of \triangle ABC= Area ( \triangle OAB) + Area ( \triangle OBC) + Area ( \triangle OCA)
\frac{\sqrt{3}}{4}( 42)^{2} =\frac{1}{2} \times r\times AB+\frac{1}{2} \times r\times BC+\frac{1}{2} \times r\times CA \\\ \\ \frac{\sqrt{3}}{4} \times 42\times 42=\frac{1}{2} r( AB+BC+CA) \\\ \\ 441 \sqrt{3} =\frac{1}{2} \times r( 42+42+42) \\\ \\ 441 \sqrt{3} =\frac{1}{2} \times r\times 126 \\\ \\ 441 \sqrt{3} =63r \\\ \\ r= \frac{441\sqrt{3}}{63}=7 \sqrt{3} \ cm \\\ \\ \\\ \\ The\ area\ of\ a\ circle= \pi r^{2} \\\ \\ = \frac {22} {7} \times 7\sqrt{3} \times 7\sqrt{3}\\\ \\ =154 \times 3 \\\ \\=462\ cm ^{2} \\\ \\ Hence\ option\ B)\ is\ correct.